Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.694
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542418

RESUMEN

Inherited retinal degenerative diseases (IRDs) are a group of rare diseases that lead to a progressive loss of photoreceptor cells and, ultimately, blindness. The overactivation of cGMP-dependent protein kinase G (PKG), one of the key effectors of cGMP-signaling, was previously found to be involved in photoreceptor cell death and was studied in murine IRD models to elucidate the pathophysiology of retinal degeneration. However, PKG is a serine/threonine kinase (STK) with several hundred potential phosphorylation targets and, so far, little is known about the specificity of the target interaction and downstream effects of PKG activation. Here, we carried out both the kinome activity and phosphoproteomic profiling of organotypic retinal explant cultures derived from the rd10 mouse model for IRD. After treating the explants with the PKG inhibitor CN03, an overall decrease in peptide phosphorylation was observed, with the most significant decrease occurring in seven peptides, including those from the known PKG substrate cyclic-AMP-response-element-binding CREB, but also Ca2+/calmodulin-dependent kinase (CaMK) peptides and TOP2A. The phosphoproteomic data, in turn, revealed proteins with decreased phosphorylation, as well as proteins with increased phosphorylation. The integration of both datasets identified common biological networks altered by PKG inhibition, which included kinases predominantly from the so-called AGC and CaMK families of kinases (e.g., PKG1, PKG2, PKA, CaMKs, RSKs, and AKTs). A pathway analysis confirmed the role of CREB, Calmodulin, mitogen-activated protein kinase (MAPK) and CREB modulation. Among the peptides and pathways that showed reduced phosphorylation activity, the substrates CREB, CaMK2, and CaMK4 were validated for their retinal localization and activity, using immunostaining and immunoblotting in the rd10 retina. In summary, the integrative analysis of the kinome activity and phosphoproteomic data revealed both known and novel PKG substrates in a murine IRD model. This data establishes a basis for an improved understanding of the biological pathways involved in cGMP-mediated photoreceptor degeneration. Moreover, validated PKG targets like CREB and CaMKs merit exploration as novel (surrogate) biomarkers to determine the effects of a clinical PKG-targeted treatment for IRDs.


Asunto(s)
Degeneración Retiniana , Animales , Ratones , Fosforilación , Degeneración Retiniana/metabolismo , Calmodulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retina/metabolismo , GMP Cíclico/metabolismo
2.
Acta Physiol (Oxf) ; 240(4): e14125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533975

RESUMEN

AIM: Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS: Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS: In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION: NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.


Asunto(s)
Intestino Delgado , Intercambiadores de Sodio-Hidrógeno , Animales , Ratones , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Microvellosidades/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Microdominios de Membrana/metabolismo
3.
Microbiol Spectr ; 12(4): e0322023, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441979

RESUMEN

Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)ß/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCß/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Hemo-Oxigenasa 1 , Caballos , Animales , Ratones , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Biliverdina/farmacología , Transducción de Señal , Replicación Viral
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894958

RESUMEN

Hereditary retinal degeneration (RD) is often associated with excessive cGMP signalling in photoreceptors. Previous research has shown that inhibition of cGMP-dependent protein kinase G (PKG) can reduce photoreceptor loss in two different RD animal models. In this study, we identified a PKG inhibitor, the cGMP analogue CN238, which preserved photoreceptor viability and functionality in rd1 and rd10 mutant mice. Surprisingly, in explanted retinae, CN238 also protected retinal ganglion cells from axotomy-induced retrograde degeneration and preserved their functionality. Furthermore, kinase activity-dependent protein phosphorylation of the PKG target Kv1.6 was reduced in CN238-treated rd10 retinal explants. Ca2+-imaging on rd10 acute retinal explants revealed delayed retinal ganglion cell repolarization with CN238 treatment, suggesting a PKG-dependent modulation of Kv1-channels. Together, these results highlight the strong neuroprotective capacity of PKG inhibitors for both photoreceptors and retinal ganglion cells, illustrating their broad potential for the treatment of retinal diseases and possibly neurodegenerative diseases in general.


Asunto(s)
Degeneración Retiniana , Ratones , Animales , Degeneración Retiniana/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372984

RESUMEN

Retinitis pigmentosa (RP) is a frequent cause of blindness among the working population in industrial countries due to the inheritable death of photoreceptors. Though gene therapy was recently approved for mutations in the RPE65 gene, there is in general no effective treatment presently. Previously, abnormally high levels of cGMP and overactivation of its dependent protein kinase (PKG) have been suggested as causative for the fatal effects on photoreceptors, making it meaningful to explore the cGMP-PKG downstream signaling for more pathological insights and novel therapeutic target development purposes. Here, we manipulated the cGMP-PKG system in degenerating retinas from the rd1 mouse model pharmacologically via adding a PKG inhibitory cGMP-analogue to organotypic retinal explant cultures. A combination of phosphorylated peptide enrichment and mass spectrometry was then applied to study the cGMP-PKG-dependent phosphoproteome. We identified a host of novel potential cGMP-PKG downstream substrates and related kinases using this approach and selected the RAF1 protein, which may act as both a substrate and a kinase, for further validation. This showed that the RAS/RAF1/MAPK/ERK pathway may be involved in retinal degeneration in a yet unclarified mechanism, thus deserving further investigation in the future.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Animales , Degeneración Retiniana/patología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Transducción de Señal
6.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37103588

RESUMEN

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animales , Arabidopsis/fisiología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Lectinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Tylenchoidea/fisiología , Solanum lycopersicum/genética , Receptores Mitogénicos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Enfermedades de las Plantas/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo
7.
J Comp Neurol ; 531(8): 935-951, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36989379

RESUMEN

The inherited eye disease retinitis pigmentosa (RP) causes the loss of photoreceptors by a still unknown cell death mechanism. During this degeneration, cyclic guanosine-3',5'-monophosphate (cGMP) levels become elevated, leading to over-activation of the cGMP-binding protein cGMP-dependent protein kinase (PKG). cGMP analogs selectively modified to have inhibitory actions on PKG have aided in impeding photoreceptor death, and one such cGMP analog is Rp-8-Br-PET-cGMPS. However, cGMP analogs have previously been shown to interact with numerous targets, so to better understand the therapeutic action of Rp-8-Br-PET-cGMPS, it is necessary to elucidate its target-selectivity and hence what potential cellular mechanism(s) it may affect within the photoreceptors. Here, we, therefore, applied affinity chromatography together with mass spectrometry to isolate and identify Rp-8-Br-PET-cGMPS interactors from retinas derived from three different murine RP models (i.e., rd1, rd2, and rd10 mice). Our findings revealed that Rp-8-Br-PET-cGMPS bound seven known cGMP-binding proteins, including PKG1ß, PDE1ß, PDE1c, PDE6α, and PKA1α. Furthermore, an additional 28 proteins were found to be associated with Rp-8-Br-PET-cGMPS. This latter group included MAPK1/3, which is known to connect with cGMP/PKG in other systems. However, in organotypic retinal cultures, Rp-8-Br-PET-cGMPS had no effect on photoreceptor MAPK1/3 expression or activity. To summarize, Rp-8-Br-PET-cGMPS is more target specific compared to regular cGMP.


Asunto(s)
GMP Cíclico , Retina , Ratones , Animales , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Retina/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo
8.
Phytomedicine ; 110: 154607, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610352

RESUMEN

BACKGROUND: Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS: This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS: The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION: SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.


Asunto(s)
Enfermedades Óseas Metabólicas , Hiperglucemia , Sambucus , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Homeostasis , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Osteoblastos , Osteogénesis , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sambucus/metabolismo , Transducción de Señal , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo
9.
J Integr Plant Biol ; 65(5): 1312-1327, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36633200

RESUMEN

Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inmunidad/genética , Inmunidad/inmunología , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/metabolismo
10.
PLoS Genet ; 19(1): e1010613, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652499

RESUMEN

Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Receptoras Sensoriales/metabolismo , Locomoción/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo
11.
Biochem Biophys Res Commun ; 647: 1-8, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36706596

RESUMEN

Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratas , Animales , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Apoptosis , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Reperfusión
12.
J Ethnopharmacol ; 300: 115705, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099983

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS: The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS: Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION: ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Guanosina Monofosfato , Animales , Cardiomegalia/tratamiento farmacológico , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos , Guanilato Ciclasa/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Deficiencia Yang , Pez Cebra
13.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260406

RESUMEN

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Asunto(s)
Arabidopsis , Fenómenos Biológicos , Solanum lycopersicum , Solanum lycopersicum/genética , Lectinas/genética , Lectinas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fitomejoramiento , Polen/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
14.
CNS Neurosci Ther ; 29(1): 306-316, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284438

RESUMEN

BACKGROUND: Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS: Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS: Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION: Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Propofol , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Propofol/toxicidad , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Aprendizaje , Transducción de Señal , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo
15.
J Bone Miner Res ; 38(1): 171-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371651

RESUMEN

We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/ß-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/ß-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/ß-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos , beta Catenina , Femenino , Animales , Ratones , Masculino , beta Catenina/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Ratones Noqueados , Vía de Señalización Wnt , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Homeostasis
16.
Cells ; 11(22)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36429131

RESUMEN

Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , GMP Cíclico , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Transducción de Señal , Activación Plaquetaria , Plaquetas/metabolismo
17.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293407

RESUMEN

The cAMP-dependent protein kinase A, cGMP-dependent protein kinase G and phospholipid-dependent protein kinase C (AGC) perform various functions in plants, involving growth, immunity, apoptosis and stress response. AGC gene family is well described in Arabidopsis, however, limited information is provided about AGC genes in rice, an important cereal crop. This research studied the AGC gene family in the AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza nivara, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula and Oryza longistaminata were searched and classified into six subfamilies, and it was found that these species have similar numbers of members. The analysis of gene duplication and selection pressure indicated that the AGC gene family expanded mainly by segmental or whole genome duplication (WGD), with purifying selection during the long evolutionary period. RNA-seq analysis revealed that OsAGCs of subfamily V were specifically highly expressed in leaves, and the expression patterns of these genes were compared with that of photosynthesis-related genes using qRT-PCR, discovered that OsAGC9, OsAGC20, and OsAGC22 might participate in photosynthesis. These results provide an informative perspective for exploring the evolutionary of AGC gene family and its practical application in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Filogenia , Genoma de Planta , Fotosíntesis/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fosfolípidos/metabolismo
18.
Eur J Pharmacol ; 935: 175305, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183856

RESUMEN

Diabetes mellitus (DM) is a metabolic disease closely related to cardiovascular disease. The dipeptidyl peptidase-4 inhibitor teneligliptin is used to treat DM and has recently been shown to have a cardiovascular protective effect against diseases such as hypertension and heart failure. The present study demonstrates the vasodilatory effect of teneligliptin using aortic rings pre-contracted with phenylephrine. Teneligliptin induced a vasodilatory effect in a dose-dependent manner, with and without endothelium. In addition, pretreatment with the nitric oxide synthase inhibitor L-NAME and small-conductance Ca2+-activated K+ channel inhibitor apamin did not alter the teneligliptin-induced vasodilatory effect. Although the adenylyl cyclase inhibitor SQ 22536 and protein kinase A (PKA) inhibitor KT 5720 did not modulate the vasodilatory effect of teneligliptin, the guanylyl cyclase inhibitor ODQ and protein kinase G (PKG) inhibitor KT 5823 effectively reduced the effect of teneligliptin. Similarly, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) also reduced teneligliptin-induced vasodilation. However, pretreatment with the inward rectifier K+ (Kir) channel inhibitor Ba2+, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, and ATP-sensitive K+ (KATP) channel inhibitor glibenclamide did not alter the vasodilatory effect of teneligliptin. Our data suggest that Kv7.X, but not Kv1.5 or Kv2.1, is one of the major Kv subtypes involved in teneligliptin-induced vasodilation. Furthermore, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin and CPA inhibited the vasodilation induced by teneligliptin. Our results suggest that teneligliptin-induced vasodilation occurs via activation of PKG, SERCA pumps and Kv channels, but not the PKA signaling pathway, other K+ channels, or endothelium.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Vasodilatación , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Hipoglucemiantes/farmacología , Vasodilatadores/farmacología , Músculo Liso Vascular , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Endotelio Vascular
19.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119362, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152759

RESUMEN

Hyperglycemia significantly decreases 3',5'-cyclic guanosine monophosphate (cGMP)-dependent pathway activity in the kidney. A well-characterized downstream signaling effector of cGMP is cGMP-dependent protein kinase G (PKG), exerting a wide range of downstream effects, including vasodilation and vascular smooth muscle cells relaxation. In podocytes that are exposed to high glucose concentrations, crosstalk between the protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) decreased, attenuating insulin responsiveness and impairing podocyte function. The present study examined the effect of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk in podocytes under hyperglycemic conditions. We found that enhancing cGMP-dependent pathway activity using a cGMP analog was associated with increases in SIRT1 protein levels and activity, with a concomitant increase in the degree of AMPK phosphorylation. The beneficial effects of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk also included improvements in podocyte function. Based on our findings, we postulate an important role for SIRT1-AMPK crosstalk in the regulation of albumin permeability in hyperglycemia that is strongly associated with activity of the cGMP-dependent pathway.


Asunto(s)
Hiperglucemia , Podocitos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Albúminas/metabolismo , Albúminas/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacología , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Fosforilación , Podocitos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
20.
J Tradit Chin Med ; 42(5): 764-772, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083484

RESUMEN

OBJECTIVE: To determine whether Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction (HFpEF) by regulating the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. METHODS: Except for control group 8 and sham surgery group 8, the remaining 32 male Sprague-Dawlay rats were developed into HFpEF rat models using the abdominal aorta constriction method. These rats in the HFpEF model were randomly divided into the model group, the Shunxin high-dose group, the Shunxin low-dose group, and the Qiliqiangxin capsule group. The three groups received high-dose Shunxin decoction, low-dose Shunxin decoction, and Qiliqiangxin capsule by gavage, respectively, for 14 d. After the intervention, the diastolic function of each rat was evaluated by testing E/A, heart index, hematoxylin-eosin staining, Masson, myocardial ultrastructure, and N-terminal pro-brain natriuretic peptide (NT-proBNP). The Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) software was used to predict targets for which Shunxin decoction acts on the cGMP-PKG pathway. Natriuretic peptide receptor A (NPRA) and guanylate cyclase (GC) were detected by immunohistochemistry, and eNOS, phosphodiesterase 5A (PDE5A), and cGMP-dependent protein kinase 1(PKG I) were determined by Western blotting. RESULTS: Compared to the model group, the thickness of the interventricular septum at the end of diastole (IVSd) and the thickness of the posterior wall at the end of diastole (PWd) of the Shunxin decoction high-dose group, Shunxin decoction low-dose group, and Qiliqiangxin capsule group were all significantly reduced ( < 0.01). Furthermore, Shunxin decoction high-dose group E/A value was decreased ( < 0.01). Compared to the model group, the expression of NPRA and GC increased in the Shunxin decoction low-dose group and the Qiliqiangxin capsule group ( < 0.01). Compared to the model group, the expressions of eNOS and PKG I increased ( < 0.05) in the Shunxin decoction high-dose group. The expression of PDE5A expression decreased in the myocardium of the Shunxin decoction high-dose group, Shunxin decoction low-dose group, and Qiliqiangxin capsule group compared to the model group ( < 0.01). CONCLUSIONS: Shunxin decoction can improve diastolic function in rats with HFpEF. It increases the expression of NPRA, GC, and eNOS in the myocardial cell cGMP-PKG signaling pathway, upregulates cGMP expression, decreases PDE5A expression to reduce the cGMP degradation. Thus, the cGMP continually stimulates PKG I, reversing myocardial hypertrophy and improving myocardial compliance in HFpEF rats.


Asunto(s)
Insuficiencia Cardíaca , Animales , Aorta Abdominal/metabolismo , Constricción , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diástole , Guanosina Monofosfato , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Masculino , Ratas , Transducción de Señal , Volumen Sistólico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA